Structural requirements of steroidal agonists of transient receptor potential melastatin 3 (TRPM3) cation channels
نویسندگان
چکیده
BACKGROUND AND PURPOSE Transient receptor potential melastatin 3 (TRPM3) proteins form non-selective but calcium-permeable membrane channels, rapidly activated by extracellular application of the steroid pregnenolone sulphate and the dihydropyridine nifedipine. Our aim was to characterize the steroid binding site by analysing the structural chemical requirements for TRPM3 activation. EXPERIMENTAL APPROACH Whole-cell patch-clamp recordings and measurements of intracellular calcium concentrations were performed on HEK293 cells transfected with TRPM3 (or untransfected controls) during superfusion with pharmacological substances. KEY RESULTS Pregnenolone sulphate and nifedipine activated TRPM3 channels supra-additively over a wide concentration range. Other dihydropyridines inhibited TRPM3 channels. The natural enantiomer of pregnenolone sulphate was more efficient in activating TRPM3 channels than its synthetic mirror image. However, both enantiomers exerted very similar inhibitory effects on proton-activated outwardly rectifying anion channels. Epiallopregnanolone sulphate activated TRPM3 almost equally as well as pregnenolone sulphate. Exchanging the sulphate for other chemical moieties showed that a negative charge at this position is required for activating TRPM3 channels. CONCLUSIONS AND IMPLICATIONS Our data demonstrate that nifedipine and pregnenolone sulphate act at different binding sites when activating TRPM3. The latter activates TRPM3 by binding to a chiral and thus proteinaceous binding site, as inferred from the differential effects of the enantiomers. The double bond between position C5 and C6 of pregnenolone sulphate is not strictly necessary for the activation of TRPM3 channels, but a negative charge at position C3 of the steroid is highly important. These results provide a solid basis for understanding mechanistically the rapid chemical activation of TRPM3 channels.
منابع مشابه
Activation of the melastatin-related cation channel TRPM3 by D-erythro-sphingosine [corrected].
TRPM3, a member of the melastatin-like transient receptor potential channel subfamily (TRPM), is predominantly expressed in human kidney and brain. TRPM3 mediates spontaneous Ca2+ entry and nonselective cation currents in transiently transfected human embryonic kidney 293 cells. Using measurements with the Ca2+-sensitive fluorescent dye fura-2 and the whole-cell patch-clamp technique, we found ...
متن کاملInhibition of Transient Receptor Potential Melastatin 3 ion channels by G-protein βγ subunits
Transient receptor potential melastatin 3 (TRPM3) channels are activated by heat, and chemical ligands such as pregnenolone sulphate (PregS) and CIM0216. Here, we show that activation of receptors coupled to heterotrimeric Gi/o proteins inhibits TRPM3 channels. This inhibition was alleviated by co-expression of proteins that bind the βγ subunits of heterotrimeric G-proteins (Gβγ). Co-expression...
متن کاملDistribution profiles of transient receptor potential melastatin-related and vanilloid-related channels in prostatic tissue in rat.
AIM To investigate the expression and distribution of the members of the transient receptor potential (TRP) channel members of TRP melastatin (TRPM) and TRP vanilloid (TRPV) subfamilies in rat prostatic tissue. METHODS Prostate tissue was obtained from male Sprague-Dawley rats. Reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time polymerase chain reaction (PCR) ...
متن کاملTRPM3 Expression in Mouse Retina
Transient receptor potential (TRP) channels constitute a large family of cation permeable ion channels that serve crucial functions in sensory systems by transducing environmental changes into cellular voltage and calcium signals. Within the retina, two closely related members of the melastatin TRP family, TRPM1 and TRPM3, are highly expressed. TRPM1 has been shown to be required for the depola...
متن کاملTRP channels activated by extracellular hypo-osmoticity in epithelia.
TRP (transient receptor potential) channels comprise a superfamily of non-selective cation channels with at least seven subfamilies. The variety of subfamilies corresponds to the differences in the activation mechanisms and functions. TRPM3 (TRP melastatin 3) and TRPV4 (TRP vanilloid 3) have been characterized as cation channels activated by extracellular hypo-osmoticity. In addition, TRPV4 is ...
متن کامل